
Using exploratory &
evaluation studies

Thomas LaToza

05-899D: Human Aspects of Software
Development (HASD)

Spring, 2011

(C) Copyright Thomas D. LaToza

Why do studies?

What tasks are most important (time consuming, error prone,
frequent, ...)?
 (exploratory studies) (potential usefulness of tool)

Are these claimed productivity benefits real?
 (evaluation studies)

Know the user!
 (You may or may not be a typical developer)

2

Build a tool, clearly it’s [not] useful!
80s SigChi bulletin: ~90% of evaluative studies found no benefits of
tool

A study of 3 code exploration tools found no benefits
 [de Alwis+ ICPC07]

How do you convince real developers to adopt tool?
 Studies can provide evidence!

3

Why not just ask developers?
Estimates are biased (time, difficulty)

More likely to remember very hardest problems
 They are hard, but not necessarily typical

Example of data from study [Ko, Aung, Myers ICSE05]

4

22% of time
developers
copied too

much or too
little code

Goal: Theories of developer activity

A model describing the strategy by which developers
frequently do an activity that describes problems that can
be addressed (“design implications”) through a better designed
tool, language, or process that more effectively supports this
strategy.

5

Exercise - How do developers debug?

6

How do developers debug?
by having the computer fix the bug for them.

by inspecting values, stepping, and setting breakpoints in debugger

by adding and inspecting logging statements

by hypothesizing about what they did wrong and testing these hypotheses.

by asking why and why didn’t questions.

by following {static, dynamic, thin} slices.

by searching along control flow for statements matching search criteria

by using information scent to forage for relevant statements.

by asking their teammates about the right way to do something.

by checking documentation or forums to see if they correctly made API calls.

by checking which unit tests failed and which passed.

by writing type annotations and type checking (“well typed programs never go wrong”)

7

Exercise - what would you like to know about these theories?

8

Studies provide evidence for or against theories

Do developers actually do it?
 Or would developers do it given better tools?

How frequently? In what situations?

What factors influence use? How do these vary for different
developers, companies, domains, expertise levels, tools, or
languages?

How long does it take?

Are developers successful? What problems occur?

What are the implications for design? How hard is it to build a tool
that solves the problems developers experience? How frequently
would it help?

9

A single study will not answer all these questions

But thinking about these questions helps to
 -set scope
 -describe limitations of study
 -pick population to recruit participants from
 -plan followup complementary studies

10

Analytical vs. empirical generalizability
Empirical: The angle of the incline significantly affects the speed
an object rolls down the incline!

-depends on similarity between situations

-need to sample lots of similar situations

-comes from purely quantitative measurements

Analytical: F = m * a

-depends on theory’s ability to predict in other situations

-describes a mechanism by which something happens

-building such models requires not just testing an effect, but
understanding situations where effect occurs (often qualitative
data)

11

Empirical vs. analytical generalizability in HASD

Empirical: developers using statically typed languages are
significantly more productive than those using dynamically typed
languages.

Analytical: static type checking changes how developers work by
[...]

Is the question, “Does Java, SML, or Perl lead to better developer
productivity even answerable?”

12

Types of studies

13

Exploratory studies Models

Generate tool
designs

Implement tool

scenarios
mockups

questions
information needs

use of time
....

survey
indirect observation
contextual inquiry

...

(Expensive)
evaluation studies

lab study
field deployment (Cheap)

evaluation studies
heuristic evaluation
paper prototypes

participatory design
...

(Some) types of exploratory studies
Field observations / ethnography
 Observe developers at work in the field

Natural programming
 Ask developers to naturally complete a task

Contextual inquiry
 Ask questions while developers do work

Surveys
 Ask many developers specific questions

Interviews
 Ask a few developers open-ended questions

Indirect observations (artifact studies)
 Study artifacts (e.g., code, code history, bugs, emails, ...)

14

Field observations / ethnography
Find software developers
 Pick developers likely to be doing relevant work

Watch developers do their work in their office

Ask developers to think-aloud
 Stream of consciousness: whatever they are thinking about
 Thoughts, ideas, questions, hypotheses, etc.

Take notes, audio record, or video record
 More is more invasive, but permits detailed analysis
 Audio: can analyze tasks, questions, goals, timing
 Video: can analyze navigation, tool use, strategies
 Notes: high level view of task, interesting observations

15

Ko, DeLine, & Venolia ICSE07
Observed 17 developers at Microsoft in 90 min sessions
 Too intrusive to audio or video record
 Transcribed think-aloud during sessions

Looked for questions developers asked

16

!" #$%&'()*(&+,-&)./0%'(.&,12234,

562,(&)./0%'(.&,&2234,72,6%82,3(49$4423,%/2,4$00%:

/(;23,(&,<(+$/2,=",562,!"#$%&'$(!%&$)*+,"(->,&$)*+,,.*$/
01$(+"$&2,&$)*+,,31!+3#$&>,%&3,&31*+$%.*$01$(+"$&,%/2,
?%423,.&,.$/,.?42/8%'(.&%@,3%'%",562,.$'9.024,(&9@$32,

762&,3282@.A2/4,)+01"*$4,(&)./0%'(.&>,4$.$**$4,%,42%/96,
7('6,'62,(&'2&',.),/24$0(&+,('>,./,-)5$%1',7('6,&.,(&'2&',
.),/24$0(&+,('B,%,)27,42%/9624,9.&'(&$23,?2*.&3,.$/,.?:

42/8%'(.&4",C@4.>, (&, '7.,9%424>, %, &223,7%4, (&('(%@@*,32:

)2//23>, '62&, 4%'(4)(23, %)'2/7%/3, ?*, %, 9.7./D2/E4, 20%(@,

/24A.&42B,72,9.323,'6242,%4,)+01"*$4",
562,0.4',)/2F$2&'@*,4.$+6',%&3,%9F$(/23,(&)./0%'(.&,

(&9@$324, 762'62/, %&*, 0(4'%D24, G4*&'%H, ./, .'62/7(42I,

72/2,0%32, (&, 9.32, %&3,76%', %, 3282@.A2/4E, 9.7./D2/4,

6%82,?22&,3.(&+",562,0.4',.)'2&,32)2//23,(&)./0%'(.&,

7%4,'62,9%$42,.),%,A%/'(9$@%/,A/.+/%0,4'%'2,%&3,'62,4('$%:

'(.&4,(&,76(96,%,)%(@$/2,.99$/4",J282@.A2/4,/%/2@*,+%82,$A,

42%/96(&+",562/2,7%4,&.,/2@%'(.&46(A,?2'722&,32)2//(&+,%,

42%/96,%&3,762'62/,'62,4.$/92,(&8.@823,A2.A@2,G?$+,/2:

A./'4>,)%92:'.:)%92>,KL>,20%(@I,G6MGNIO"P>,A,Q,"RSI",
T%423, .&, 023(%&4>, '62, (&)./0%'(.&, '6%', '..D, '62,

@.&+24', '., %9F$(/2,7%4, 762'62/, 9.&82&'(.&4,72/2,).@:

@.723,G&MIB,?%423,.&,0%H(0$04>,'62,@.&+24','.,%9F$(/2,

7%4,D&.7@23+2,%?.$',324(+&,G4M>,4UI,%&3,?26%8(./,G1N>,
1UI",1.,.&2,4.$/92,.),(&)./0%'(.&,'..D,@.&+2/,'.,%9F$(/2,

'6%&,%&.'62/,G7GNV>,UMNIO"SU>,AQ"RSI>,&./,7%4,'62/2,%,3():
)2/2&92,(&,42%/96,'(024,?2'722&,4.$/924,(&8.@8(&+,A2.A@2,

%&3, 4.$/924, '6%', 3(3, &.', G7GN>, UUWIO"RV>, AQ"RSI", 56242,
'(024, %/2,0(4@2%3(&+>, 6.7282/>, %4,0%&*, .), '62,0%H(:

0$04, 72/2, .&, 32)2//23, 42%/9624>, 4., '62*, 72/2, @(D2@*,

@.&+2/,'6%&,46.7&,62/2",<$/'62/>,3282@.A2/4,+%82,$A,./,

32)2//23, 42%/9624, ?29%$42, '62*, 32A2&323, .&, %, A2/4.&,

D&.7&,'.,?2,$&%8%(@%?@2",562*,72/2,%@4.,2HA2/',%',%44244:

(&+,'62, @(D2@(6..3,.),'62,42%/96,4$99223(&+,%&3,7.$@3,

%?%&3.&,%,42%/96,(),'62,(&)./0%'(.&,7%4,&.',(0A./'%&',

2&.$+6",

!"X Y%' (&+, -&)./0%'(.&,12234,

562,A2/92&'%+24,(&,'62,0(33@2,.),,9.02,)/.0,%,4$/82*,.),

ZM,3())2/2&',3282@.A2/4,G.),SSR,9.&'%9'23I>,%4D(&+,'620,'.,

/%'2,'62(/,%+/2202&',7('6,4'%'202&'4,%?.$',2%96,.),'6242,

(&)./0%'(.&,'*A24>,?%423,.&,%,V:A.(&',49%@2,)/.0,4'/.&+@*,

3(4%+/22,'.,4'/.&+@*,%+/22",562,?%/4,/2A/242&','62,A2/92&',

.),3282@.A2/4,76.,%+/223,./,4'/.&+@*,%+/223,'6%','62,(&:

)./0%'(.&,7%4,G)/.0,@2[,'.,/(+6'I,"#'3*!)(!%!3%#)8"(-%
'*3-*$&&>,1()5)"9):9$%3*%4".."+19!%!3%3:!)"(>,%&3,,)4%01$&/
!"3():9$%)++1*)+;",

562,4$/82*,/24$@'4,/282%@,(&'2/24'(&+,'/2&34",562,0%:

\./('*,.),3282@.A2/4,/%'23,'62,0.4',)/2F$2&'@*,4.$+6',(&:

)./0%'(.&,(&,.$/,.?42/8%'(.&4,%4,0./2,(0A./'%&'>,%&3,

'62*,%@4.,/%'23,)/2F$2&'@*,32)2//23,(&)./0%'(.&,%4,0./2,

$&%8%(@%?@2",]&2, 3(49/2A%&9*, (4, '6%', 3282@.A2/4, /%'23,

9.7./D2/, %7%/2&244, G)MI, %4, /2@%'(82@*, $&(0A./'%&'>,

76(96,9.&)@(9'4,7('6,('4,)/2F$2&9*,(&,.$/,.?42/8%'(.&4",-',

0%*,?2,'6%',9.7./D2/,%7%/2&244, (4,4.,)/2F$2&',4.$+6',

%&3,4$99244)$@@*,.?'%(&23,'6%',3282@.A2/4,3.,&.','6(&D,

%?.$',('",^2,%@4.,.?42/823,3282@.A2/4,4$99244)$@@*,.?'%(&,

D&.7@23+2, %?.$', '62, (0A@(9%'(.&4, .), %, 96%&+2, G4ZI>,
762/2%4,3282@.A2/4,/%'23,(',/2@%'(82@*,3())(9$@','.,%9F$(/2",

562,4$/82*,%@4.,?2+(&4,'.,/282%@,76(96,(&)./0%'(.&,'*A24,

6%82, 0./2, F$24'(.&%?@2, %99$/%9*>, &%02@*, D&.7@23+2,

%?.$',324(+&,G4M>,4ZI>,?26%8(./,G1NI>,%&3,'/(%+2,G:N>,:MI",

,

Figure 3. Types of information developers sought, with search times in minutes; perceptions of the information’s importance,
availability, and accuracy; frequencies and outcomes of searches; and sources, with the most common in boldface.

Natural programming
Design a simple programming task for users

Ask them to write solution naturally
 make up language / APIs / notation of interest

Analyze use of language in solutions

Advantages:
 elicits the language developers expect to see
 open-ended - no need to pick particular designs
 lets developer design language

Disadvantages:
 assumes the user’s notation is best
 lets developer design notation

17

Pane, Ratanamahatana, & Myers ‘01

18

Grade school students asked to describe in prose how PacMan
would work in each of several scenarios

Pane, Ratanamahatana, & Myers IJHCS01

19

Surveys
Can reach many (100s, 1000s) developers
 Websites to run surveys (e.g., SurveyMonkey)

Find participants (usually mailing lists)

Prepare multiple choice & free response questions
 Multiple choice: faster, standardized response
 Free response: more time, more detail, open-ended

Background & demographics questions
 E.g., experience, time in team, state of project,

Study questions

Open comments

20

LaToza, Venolia, & DeLine ICSE06

21

Tools for understanding code

104 respondents at Microsoft rated
 % of time on different activities
 Tool use frequency & effectiveness
 Severity of 13 “problems”

Semi-structured interviews
Develop a list of focus areas
 Sets of questions related to topics

Prompt developer with question on focus areas
 Let developer talk at length
 Follow to lead discussion towards interesting topics

Manage time
 Move to next topic to ensure all topics covered

22

Contextual inquiry [Beyer & Holtzblatt]
Interview while doing field observations

Learn about environment, work, tasks, culture, breakdowns

Principles of contextual inquiry
 Context - understand work in natural environment
 Ask to see current work being done
 Seek concrete data - ask to show work, not tell
 Bad: usually, generally Good: Here’s how I, Let me show you
 Partnership - close collaboration with user
 Not interviewer, interviewee! User is the expert.
 Not host / guest. Be nosy - ask questions.
 Interpretation - make sense of work activity
 Rephrase, ask for examples, question terms & concepts
 Focus - perspective that defines questions of interest

Read Beyer & Holtzblatt book before attempting this study
23

Indirect observations
Indirect record of developer activity

Examples of artifacts (where to get it)
 Code (open source software (OSS) codebases)
 Code changes (CVS / subversion repositories)
 Bugs (bug tracking software)
 Emails (project mailing lists, help lists for APIs)

Collect data from instrumented tool (e.g., code navigation)

Advantages:
 Lots of data, easy to obtain
 Code, not developer activity

Disadvantages:
 Can’t observe developer activity

24

Malayeri & Aldrich, ESOP09
Gathering data for usefulness of language feature

Structure of study
1. Make hypotheses about how code would benefit.
2. Use program analysis to measure frequency of idioms in corpus
of codebases.
3. Have evidence that code would be different with approach.
4. Argue that different code would make developers more
productive.

Example of research questions / hypotheses

1. Does the body of a method only use subset of parameters?
 Structural types could make more general
 Are there common types used repeatedly?

2. How many methods throw unsupported operation exception?

25

Exercise: What study(s) would you use?
How would you use studies in these situations?

1. You’d like to design a tool to help web developers more easily
reuse code.

26

2. You’d like to help developers better prioritize which bugs should be
fixed.

(Some) types of exploratory studies
Field observations / ethnography
 Observe developers at work in the field

Surveys
 Ask many developers specific questions

Interviews
 Ask a few developers open-ended questions

Contextual inquiry
 Ask questions while developers do work

Indirect observations (artifact studies)
 Study artifacts (e.g., code, code history, bugs, emails, ...)

27

Cheap evaluation studies
You have a tool idea
 with scenarios of how it would be used
 and mockups of what it would look like

You could spend 2 yrs building a static analysis to implement tool
 But is this the right tool? Would it really help?
 Which features are most important to implement?

Solution: cheap evaluation studies
 Evaluate the mockup before you build the tool!
 Tool isn’t helpful: come up with new idea
 Users have problems using tool: fix the problems

28

(Some) types of cheap evaluation studies
Empirical studies (w/ users)

Paper prototyping
 Do tasks on paper mockups of real tool
 Simulate tool on paper

Wizard of oz
 Simulate tool by computing results by hand

Analytical techniques (no users)

Heuristic evaluation / cognitive dimensions
 Assess tool for good usability design

Cognitive walkthrough
 Simulate actions needed to complete task

29

Paper prototyping
Build paper mockup of tool before building real version
 May be rough sketch or realistic screenshots

Experimenter simulates tool by adding / changing papers
 May have cutouts for menus, scrolling, screen objects

Good for checking if user
 Understands interface terminology
 Commands users want match actual commands
 Able to understand what tool does
 Whether information provided by tool helps

Challenges - must anticipate commands used
 Iteratively add commands from previous participants
 Prompt users to try it a different way

Challenges:
 Must anticipate user questions beforehand

30

Wizard of oz
Participant believes (or pretends) to interact with real tool
 Experimenter simulates (behind the curtain) tool
 Computes data used by tool by hand

Original example
 Voice user interface
 Experimenter translates speech to text

Advantages
 High fidelity - user can use actual tool before it’s built

Disadvantages
 Requires working GUI, unlike paper prototypes

31

Types of prototypes

32

!  Paper
!  “Low fidelity prototyping”
!  Often surprisingly effective
!  Experimenter plays the computer
!  Drawn on paper " drawn on computer

!  “Wizard of Oz”
!  User’s computer is “slave” to experimenter’s computer

!  Experimenter provides the computer’s output
!  “Pay no attention to that man behind the curtain”
!  Especially for AI and other hard-to-implement systems

!  Implemented Prototype
!  Visual Basic
!  Adobe (MacroMind) Flash and Director
!  Visio
!  PowerPoint
!  Web tools (even for non-web UIs)

!  Html
!  Scripting

!  (no database)
!  Real system

!  Better if sketchier for early design
!  Use paper or “sketchy” tools, not real widgets
!  People focus on wrong issues: colors, alignment, names
!  Rather than overall structure and fundamental design

Increasing fidelity

Heuristic evaluation [Nielsen]
Multiple evaluators use dimensions to identify usability problems
 Evaluators aggregate problems & clarify

1. Visibility of system status - keep users informed

2. Match between system & real world
 Speak users language, follow real world conventions

3. User control & freedom - undo, redo, don’t force down paths

4. Consistency & standards
 Words, situations, actions should mean same in similar situations

5. Error prevention - prevent illegal actions
 E.g., gray out or remove buttons user can’t use

33

Heuristic evaluation [Nielsen]
6. Recognition rather than recall - impt for infreq commands
 Select commands to perform rather than remember command
 Recognition: menus Recall: command line interface

7. Flexibility & efficiency of use - make frequent actions fast
 Eg., keyboard accelerators, macros

8. Aesthetic & minimalist design - remove irrelevant information
 More clutter = harder to do visual search

9. Help users recognize, diagnose, & recover from errors
 Error message in language user understands
 Precisely indicate problem, suggest solution

10. Help & documentation
 Easy to search, task focused, concrete steps to take
 Always available

34

Cognitive dimensions of notations [Green & Blackwell]

Dimensions for structuring assessment based on experience

Visibility & juxtaposability
 What is difficult to see or find?
 If need to compare or combine parts, can see at same time?

Viscosity - how hard is it to change?

Diffuseness - brief or long winded?

Hard mental operations - what requires most mental effort?

Error proneness - are there common mistakes that irritate?

Closeness of mapping - how close is notation to what is described?

Role expressiveness - are parts easy to interpret?

35

Cognitive dimensions of notations [Green & Blackwell]
Hidden dependencies
 Are changes to one part which affect others apparent?
 Do some actions cause dependencies to freeze?

Progressive evaluation - can see progress, stop and check work?
 Can you try out partially completed versions?

Provisionality - can sketch or try things out when playing with ideas?

Premature commitment -are actions only possible in a specific order?
 Do users have enough information to choose correct actions?

Consistency - do parts with similar meaning look similar?
 Are parts that are the same shown in different ways?

Secondary notation - is it possible to write notes to yourself?

Abstraction management - can you define your own elements?

36

Cognitive walkthrough
Determine the correct sequence of actions to perform task
 Build mockups (screenshot) of each step

For each step, write analysis:

1. Will user try to achieve correct effect?
 Will user have the correct goal?

2. Will user notice correct action is available?
 Will user be likely to see the control?

3. Will user associate correct action w/ effect trying to achieve?
 After users find control, will they associate with desired effect?

4. If correct action performed, will user see progress to solution?
 Will users understand the feedback?

37

Exercise: What study(s) would you use?

38

2. You’re designing a specification language for finding bugs.

1. You’re designing a tool for a new notation for visualizing software.

How would you design a study(s) in these situations?

(Some) types of cheap evaluation studies
Empirical studies (w/ users)

Paper prototyping
 Do tasks on paper mockups of real tool
 Simulate tool on paper

Wizard of oz
 Simulate tool by computing results by hand

Analytical techniques (no users)

Heuristic evaluation / cognitive dimensions
 Assess tool for good usability design

Cognitive walkthrough
 Simulate actions needed to complete task

39

Evaluation studies
You’ve built a tool
 You want to write a paper claiming it’s useful.
 You want to get a company to try it out.

Solution: run an evaluation study
 Cheap evaluation study
 (Less cheap, but more convincing) evaluation study

40

(Some) types of evaluation studies
(Cheap) evaluation studies

Lab experiments - controlled experiment between tools
 Measure differences of your tool w/ competitors
 Strongest quantitative evidence

Field deployments
 Users try your tool in their own work
 Data: usefulness perceptions, how use tool
 Usually more qualitative

41

Lab studies
Users complete tasks using your tool or competitors
 Within subjects design - all participants use both
 Between subjects design - participants use one

Typical measures - time, bugs, quality, user perception
 Also measures from exploratory observations(think-aloud)
 More detailed measures = better understand results

Advantages - controlled experiment! (few confounds)

Disadvantages - lower external validity
 Users still learning how to use tool, unfamiliar with code
 Benefits may require longer task

42

Ko & Myers CHI09
20 masters students did two 30 minute tasks

Used tutorial to teach the tool to users

Tasks: debug 2 real bug reports from ArgoUML
 Diagnose problem & write change recommendation

Measured time, success, code exploration, perception

43

Results

Task 1

Task 2

Field deployments
Generally not controlled comparison
 Can’t directly compare your tool against others
 Different tasks, users, code

Give your tool to developers. See how they use it

Data collection: interviews, logging data, observations

Qualitative measures
 Perception: do they like the tool?
 Use frequency: how often do they use it?
 Uses: how do they use it? what questions? tasks? why?
 Wishes: what else would they like to use it for?
Quantitative comparison possible but hard

44

Cherubini, Venolia, & DeLine VL/HCC07
Build large code map to be used for meetings & discussions

Hypotheses: could be used for
 1. understanding new features in code
 2. reengineering parts of the code
 3. transferring knowledge to new develoers

Field deployment of map for 1 month

Only 2 newcomers used it!
 Too many or too few details for discusssions
 Sometimes wrong information (call graph vs inheritance)
 Layout was static & couldn’t be changed

Developers instead made extensive use of whiteboard

45

Designing an evaluation study
1. What is your research question? What do you want to learn?
 Write a paper abstract with your ideal results

2. What type of study will you conduct?

3. Who will participate? Undergrads, graduate students, professionals?
 Closer to your target population is better
 Where will you recruit them from?
 What incentive to participate: $$$, class credit, friends, ...

4. What tasks will they perform?
 Tasks should demonstrate tool’s benefits.

5. What data will you collect?
 think aloud, post task interviews, ...
 screen, audio, video recording

6. Get Institutional Review Board (IRB) approval

46

Learning a new tool
Study participants will not know how to use your tool.

Solution: tutorial of your tool

What to cover:
 Important features, commands of tool
 What visualizations, notations mean
 What questions does tool let user answer?
 Example task done with tool

Use both text & hands on exercises

Let user ask experimenter questions

47

Piloting
Most important step in ensuring useful results!

(1) Run study on small (1 - 4) number of participants

(2) Fix problems with study design
 Was the tool tutorial sufficient?
 Did tasks use your tool? Enough?
 Did they understand your questions? (esp surveys)
 Did you collect the right data?
 Are your measures correct?
(3) Fix usability problems
 Are developers doing the “real” task, or messing with tool?
 Are users confused by terminology in tool?
 Do supported commands match commands users expect?

(4) Repeat 1, 2, and 3 until no more (serious) problems

48

IRB Approval
Universities have an Institutional Review Board (IRB)
responsible for ensuring human subjects treated ethically

Before conducting a human subjects study

• Must complete human subjects training (first time only)

• Submit an application to IRB for approval (2 - ??? weeks approval
time)

During a study

• Must administer “informed consent” describing procedures of
study and any risks to participants

See http://www.cmu.edu/osp/regulatory-­‐compliance/human-­‐subjects.html

49

For more information
Field observations, ethnography, interviews, artifact studies, qualitative methods Michael Quinn Patton. (2002).
Qualitative Research & Evaluation Methods. Sage Publications.

Natural programming John F. Pane, Chotirat "Ann" Ratanamahatana, and Brad A. Myers, "Studying the language and
structure in non-programmers solutions to programming problems", International Journal of Human-Computer Studies
(IJHCS). Special Issue on Empirical Studies of Programmers, vol. 54, no. 2, February 2001, pp. 237-264.

Contextual inquiry Beyer, H. and Holtzblatt, K. 1997. Contextual Design: Defining Customer-Centered Systems. Morgan
Kaufman.

Quantitative methods, experiment design, surveys Robert Rosenthal & Ralph Rosnow. (2007). Essentials of Behavioral
Research: Methods and Data Analysis. McGraw-Hill.

Qualitative methods applied to SE Carolyn B. Seaman. 1999. Qualitative Methods in Empirical Studies of
Software Engineering. IEEE Trans. Softw. Eng. 25, 4 (July 1999), 557-572.

Wizard of Oz David Maulsby, Saul Greenberg and Richard Mander. “Prototyping an Intelligent Agent through Wizard of Oz,”
Human Factors in Computing Systems, Proceedings INTERCHI'93. Amsterdam, The Netherlands, Apr, 1993. pp. 277-284.

Sketching and Prototyping Bill Buxton. 2007. Sketching User Experiences: Getting the Design Right and the
Right Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Heuristic evaluation Nielsen, J., Enhancing the explanatory power of usability heuristics, CHI'94 Conference
Proceedings, (1994).

Cognitive walkthrough C. Wharton et al. "The cognitive walkthrough method: a practitioner's guide" in J. Nielsen & R.
Mack "Usability Inspection Methods" pp. 105-140.

Cognitive dimensions of notations Thomas R. G. Green, Marian Petre. (1996). Usability Analysis of Visual
Programming Environments: A 'Cognitive Dimensions' Framework. J. Vis. Lang. Comput. 7(2): 131-174.

50

Questions?

51

